Stronę tą wyświetlono już: 20958 razy
Temat ten był już poniekąd omawiany w dziale Matematyka → Wektory → Obrót wektora o kąt, z tego też powodu samo wyprowadzenie oraz słuszność wzorów tutaj użytych do stworzenia macierzy obrotu nie będzie tutaj omawiana po raz kolejny. Tych więc, którzy są zainteresowani szczegółami związanymi z wyprowadzeniem odsyłam do wcześniej wspomnianej strony.
Macierz obrotu w przestrzeni 2W
Istnieje taka grupa szczególnych macierzy, zwanych macierzami obrotu Mo, która umożliwia poprzez mnożenie macierzowe z wektorem V tego samego wymiaru n uzyskanie nowego wektora V', który został obrócony względem początku układu współrzędnych o zadany kąt α.
Macierz obrotów Mo dla danego kąta α w przestrzeni 2W przyjmuje postać następującą:
Obrócenie wektora, tak jak to wcześniej wspomniałem można wykonać poprzez zwykłe mnożenie macierzowe w następujący sposób:
Na poniższym rysunku można zobaczyć przykładowy obrót figury płaskiej względem początku układu współrzędnych.
Tę samą operację można wykonać względem dowolnego punktu, wystarczy tylko nieco zmodyfikować wzór [2]:
Istnieją szczególne rodzaje macierzy obrotów Mo, do których należą obroty o krotność kąta 90°. Tak więc dla obrotu o 90° macierz obrotów Mo ma następującą postać:
Dla 270° a tym samym dla -90° macierz obrotu ma postać następującą:
I nareszcie, macierz obrotu Mo o 180°:
Macierze obrotu w przestrzeni 3W
Obroty trójwymiarowe, które również zostały omówione na stronie Matematyka → Wektory → Obrót wektora o kąt, można wykonywać w zasadzie na podstawie tego samego wzoru [1] z lekką modyfikacją i tylko względem danej osi układu współrzędnych.
Macierz obrotu dla osi z w układzie 3W:
Na poniższej animacji można zobaczyć przykładowy obrót obiektu względem osi z.
Macierz obrotu dla osi y w układzie 3W:
Macierz obrotu dla osi x w układzie 3W:
Składanie macierzy obrotu w układach 3W
Istnieje również możliwość składania obrotów względem np. osi x, y i osi z. Taka operacja będzie miała następującą przykładową postać dla przykładowego obrotu względem osi x i z:
Cechy macierzy obrotu Mo
Każda macierz obrotu Mo jest macierzą ortogonalną i jako taka spełnia określone warunki:
1) Wartość wyznacznika macierzy obrotu Mo zawiera się w przedziale |M0|∈{-1; 1}
2) Transpozycja macierzy obrotu MoT jest równa macierzy Mo-1:
3) Iloczyn macierzy obrotu Mo z jej transpozycją MoT daje w wyniku macierz jednostkową: